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Abstract—The the graded rough set and multi-granulation
rough set are two significant extended rough set models, both
constructed on the the indiscernibility relations. The purpose of
this paper is to study the good points of graded rough set in
the multi-granulation environment which in different granule
have different grades in ordered information system. Three
new types multi-granulation with different grades rough set
models are proposed, which include optimistic multi-granulation
with different grades, pessimistic multi-granulation with different
grades and the mean multi-granulation with different grades
rough set. Then, their principal structure are studied, and their
basic properties are obtained as well. Finally, we study a case
about students’ achievement estimate the performance of the
proposed properties. In the viewpoint of granular computing,
our study extension the classical rough set theory.

Index Terms—Different grades; Graded rough set; multi-
granulation rough set; Ordered information system

I. INTRODUCTION

In 1980s, the Pawlak first proposed the Rough set theory
(RST) in [1]. It is a mathematical tool to deal with uncertainty
in an information system. Compared with the probability theo-
ry, fuzzy set and evidence theory, it have their own advantages
in the fields of medical diagnosis, knowledge discovery, image
processing and so on.

This theory is built on the basis of the classification
mechanism, it’s classified as the equivalence relation in a
specific universe, and the relation constitutes a partition of
the discuss universe. The main idea of RST is the utilize
a known knowledge in knowledge base to approximate the
inaccurate and indeterminate knowledge. But, there is a severe
limitation for Pawlak rough set. That there is no fault tolerance
mechanisms between equivalence class and the basic set. Thus,
people take considered the degree of overlap of the equivalence
class and the basic set in the view of quantitative information.
They thought the RST should be improved and expanded that
the quantification of particular value are considered. So, Yao
et al. investigated the relationship between rough set model
and modal logics, the graded rough set(GRS) was proposed
by utilizing the modal logics [2]. The absolute quantitative
information about knowledge and concepts are described in
this model, and expands the Pawlak model. Zhang have
accomplished a lot of research studies on graded rough set
and related works [3]. Measures |[x]R| − |X ∩ [x]R| and
|X ∩ [x]R| reflect the absolute number of |[x]R| elements
outside and inside X , and called external grade and internal

grade, respectively. So, based above absolute numbers and the
Rk(X) means union of the elements which whose classes’s
internal grade aboutX is greater than k; Rk means union of
the elements which whose classes’s external grade about X is
at most k [4]. This nature number k is called the grade of GRS.
Because we describe the lower and upper approximations in
absolute quantitative information so the Rk(X) ⊆ Rk(X)
does not hold, in general. The GRS model which based on
two discuss universes was proposed by Liu [5].

Furthermore, the attributes with preference-ordered domains
(sometimes it’s named criteria) are not studied in the original
approaches. In a lot of real applications, we have to faced the
issues that one attribute play a crucial role in make decision.
For this reason, Yao considered this kind problem that through
looking foe the relationship between orderings of attribute val-
ues and the objects to mining ordering rules in [6]. For looking
for the rules, the general information table be generalized to
an information system with order that is ordered information
system(OIS). In [7], through taking into account the ordering
properties of criteria the RST was expanded by Greco et
al.. The expanded model also named dominance-based rough
set model (DRSA). Yang investigated the RST approach and
reductions based dominance relation in incomplete ordered
information system [8]. Xu have systematic studied the rough
set in OIS [9]. The main innovation of these works is use a
dominance relation replace the indiscernibility relation.

As a useful tool for information processing, based on
Zadeh’s ’information granularity’ [10] the Granular Comput-
ing(GrC) was proposed. The GrC is a term of methodologies,
tools and techniques for making utilize of granules in the
process of solving real problems. In recently decades, more
and more scientists focus on the study theory and applications
of GrC. In many fields it has been successfully applied such as
knowledge discovery, concept formation and machining learn-
ing. Based this view, the classical single-granulation Pawlaks
rough set have been extended to a multi-granulation rough set
model by Qian et al. [11],[12]. And later, many researchers
have extended the multi-granulation rough set. Xu et and Wang
further investigated a fuzzy multi-granulation RST model in
[13], a generalized multi-granulation RST approach [14] and a
multi-granulation RST model in ordered information systems.
The hierarchical structure properties of the multi-granulation
RST and the multi-granulation RST in incomplete information
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system were investigated by Yang et al. in [15] and [16],
respectively. Lin et al. presented a neighborhood-based multi-
granulation RST [17]. Furthermore, the properties of multi-
granulation RST and the topological structures were deep
analyzed by She et al. in [18]. Recently, follow the Xu’s work
Li et al. developed a further study of multi-granulation T-
fuzzy rough set, relationships between multi-granulation and
classical T-fuzzy rough set were studied carefully [19].

The rest of the paper is organized by the following way.
Some necessary essential concepts are introduced in part 2. In
section 3, three types multi-granulation with different grades
rough set models are constructed in OIS and their properties
are discussed. In section 4, a case about students achievement
are studied. The section 5 are the conclusions and the further
studies of this topic.

II. PRELIMINARIES

In this section, a few basic notions about RST in OIS [7],[9],
graded rough set [2],[3],[4] and multi-granulation rough set
[11],[12] are simply reviewed.

A. The rough set model in OIS

An order triple I< = (U,AT, F ) is an ordered information
system, let for a criterion al ∈ AT and it’s domain is complete
pre-ordered through an outranking relation <al

, then x <al
y

implies that x is at least no less than y under the criterion al.
In other words, we can call that x dominates y. One can define
x <al

y by fl(x) ≥ fl(y) use the increasing preference, that
is al ∈ AT , x and y ∈ U . Give a subset A means A ⊆ AT
have for all al ∈ A, x < y is equivalent to x <al

y. There is
a another mean that x dominates y under the all rules in A.
In summary, an ordered information system can be denoted as
I< = (U,AT, F ).

Suppose there is an ordered information system that I< =
(U,AT, F ), given A ⊆ AT , the R<

A is a dominance relation
in I< and the relation is R<

A = {(x, y) : fl(x) ≥ fl(y),∀al ∈
A, (x, y) ∈ U × U}, and U/R<

A = {[x]
R

<
A

: x ∈ U} is
the set of dominance classes induced by a dominance relation
R<

A , where [x]
R

<
A

is called dominance class containing x, and

[x]
R

<
A
= {z ∈ U : (z, x) ∈ R<

A}. For all X ⊆ U , A ⊆ AT ,
the upper and lower approximations are

R
<
A(X) = {x ∈ U : [x]

R
<
A
∩X 6= ∅},

R<
A(X) = {x ∈ U : [x]

R
<
A
⊆ X}.

When R
<
A(X) 6= R<

A(X), in this ordered information
system one may call X is a rough set.

B. Graded rough set model

The absolute quantitative information on basic concepts and
knowledge granules are the main investigated topics of the
graded rough set model. It is also a generalization of the
classical rough set. If give a non-negative integer k and it
is named ’graded’.

Given an information system I = (U,AT, F ), for any A ⊆
AT,X ⊆ U, k ∈ N and RA is a equivalence relation in I . We

can get the definition of the graded rough set is

Rk(X) = {x ∈ U : |[x]R| − |[x]R ∩X| ≤ k},
Rk(X) = {x ∈ U : |[x]R ∩X| > k}.

The RkX is the union of the objects that whose equivalence
class include the numbers of elements outside X are not more
than k. So, the RkX means the union of the objects that whose
equivalence class include the numbers of elements inside X
are at least k. If k = 0, so R(X) = Rk(X) and R(X)Rk(X).
Thus, the Pawlak rough set is one exceptional situation of
this graded rough set model. According to the definition, we
can get that the inclusion between Rk(X) and Rk(X) is
not hold in most cases. Then, the upper and lower boundary
regions are naturally proposed. And they are represented as
pos(X) = Rk(X)∩Rk(X), neg(X) =∼ (Rk(X)∪Rk(X)),
the upper boundary region is Ubn(X) = Rk(X)−Rk(X), the
lower boundary region is Lbn(X) = Rk(X) − Rk(X), and
the total boundary region is bn(X) = Ubnk(X) ∪ Lbnk(X),
respectively.

C. Multi-granulation rough set model

We just introduce the models of multi-granulation rough set
and the details can be found in references [7].

If there is an information system that I = (U,AT, f), and
Aj ⊆ AT, 1 ≤ j ≤ m, m is the number of the considered
attribute sets and [x]Aj

= {y|(x, y) ∈ RAj
}, RAi

is an
equivalent relation with respect to the attributes set Aj . We
can get the definitions of the optimistic upper and lower
approximations of the set X ∈ U under the Aj are

m∑
j=1

Ao
j(X) = {x : X ∩

m∧
j=1

[x]Aj
6= ∅},

m∑
j=1

Ao
j(X) = {x :

m∨
j=1

[x]Aj ⊆ X}.

The pessimistic lower and upper approximations of a set
X ∈ U about the Aj ⊆ A, 1 ≤ j ≤ m can be similarly
defined by following way.

m∑
j=1

Ap
j (X)(X) = {x :

m∨
j=1

[x]Aj ∩X 6= ∅}.
m∑
j=1

Ap
j (X) = {x :

m∧
j=1

[x]Aj
⊆ X},

Moreover,
m∑
j=1

Ao
j(X) 6=

m∑
j=1

Ao
j(X), (

m∑
j=1

Ap
j (X) 6=

m∑
j=1

Ap
j (X)), one can say that X is the optimistic(pessimistic)

rough set with respect to multiple equivalence relations or mul-
tiple granulations. If not the X is the optimistic(pessimistic)
definable set about these multiple equivalence relations or
multiple granulations. It’s similar to the Pawlak rough set, we
can obtain other regions according to the upper and lower
approximations, respectively.

Based these above definitions of optimistic and pessimistic
multi-granulation rough set, the follow properties are estab-
lished.

• (1)
m∑
j=1

Ao
j(X) ⊆

m∑
j=1

Ap
j (X);
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• (2)
m∑
j=1

Ao
j(X) ⊇

m∑
j=1

Ap
j (X);

• (3) Bn
m∑
j=1

Ao
j(X) ⊇ Bn

m∑
j=1

Ap
j (X).

According to these two types of rough set models, we can
see that the optimistic boundary region is smaller and the
pessimistic boundary region is bigger than the classical rough
set model. In some cases, it can deal with uncertain problems
easily.

III. MULTI-GRANULATION WITH DIFFERENT GRADES
ROUGH SET IN OIS

To study the good points of graded rough set with the
multi-granulation environment in OIS, three new types multi-
granulation with different grades rough set models are pro-
posed, in this section.

A. The optimistic multi-granulation with different grades
rough set in OIS

We combine optimistic multi-granulation and graded rough
set model which in different granulation have different graded
in OIS.
Definition 3.1.1. There is an ordered information system
I< = (U,AT, f), A1, A2, ..., Am are subset of AT , for any
X ⊆ U , kj ∈ N. The optimistic multi-granulation upper and
lower approximation of X with different grades are defined in
following way:
m∑
j=1

R<
Aj

O

kj

(X) = {x ∈ U :
m∨
j=1

(|[x]<Aj
| − |X ∩ [x]<Aj

|) ≤ kj},

m∑
j=1

R<
Aj

O

kj

(X) =∼
m∑
j=1

R<
Aj

O

kj

(∼ X).

We can also define the optimistic multi-granulation with
different grades negative region, positive region, and boundary
region of X in the ordered information system.

(1) Pos(X)Om∑
i=1

ki

=
m∑
i=1

R<
Ai

O

ki

(X) ∩
m∑
i=1

R<
Ai

O

ki

(X);

(2) Neg(X)Om∑
i=1

ki

=∼ (
m∑
i=1

R<
Ai

O

ki

(X) ∪
m∑
i=1

R<
Ai

O

ki

(X));

(3) Lbn(X)Om∑
i=1

ki

=
m∑
i=1

R<
Ai

O

ki

(X)−
m∑
i=1

R<
Ai

O

ki

(X);

(4) Ubn(X)Om∑
i=1

ki

=
∑m

i=1 R
<
Ai

O

ki
(X)−

∑m
i=1 R

<
Ai

O

ki

(X);

(5) Bn(X)Om∑
i=1

ki

=
m∑
i=1

R<
Ai

O

ki

(X)
a m∑

i=1

R<
Ai

O

ki

(X).

In the graded rough set model the lower approxima-
tion is not totally included in upper approximation then,
m∑
i=1

R<
Ai

O

ki

(X) ⊆
m∑
i=1

R<
Ai

O

ki

(X) not holds all the time. So, we

describe the boundary region through defined the lower and
upper boundary region. The ”

a
” is the symmetric difference

operator of sets. So, the boundary region of X can de described
as Bn(X)Om∑

i=1

ki

= Lbn(X)Om∑
i=1

ki

∪ Ubn(X)Om∑
i=1

ki

, too.

Theorem 3.1.1 There is an ordered information system I< =
(U,AT, f), A1, A2, ..., Am are subset of AT , for any X ⊆ U ,
kj ∈ N. The following properties can be get:

m∑
j=1

R<
Aj

O

kj

(X) = {x ∈ U :
m∧
j=1

(|[x]<Aj
∩X|) > kj}.

Proof. According the Definition 3.1.1 we can get

∼
m∑
j=1

R<
Ai

O

kj

(∼ X)=∼ {x ∈ U : |[x]<A1
| − |[x]<A1

∩ (∼ X)| ≤

k1 ∨|[x]<A2
| − |[x]<A2

∩ (∼ X)| ≤ k2 ∨ · · · ∨ ≤ km}
= {x ∈ U : |[x]<A1

| − |[x]<A1
∩ (∼ X)| > k1 ∧|[x]<A2

|−
|[x]<A2

∩(∼ X)| > k2∧· · · ∧|[x]<Am
|−|[x]<Am

∩(∼ X)| > km}
= {|[x]<Aj

| − |[x]<A1
∩ ∼ X| > kj ,∀ j = 1, 2, 3, · · · ,m}

= {|[x]<Aj
∩X| > kj ,∀ j = 1, 2, 3, · · · ,m}

= {x ∈ U :
m∧
j=1

(|[x]<Aj
∩X|) > kj}.

Thus, the theorem is proved. 2

Theorem 3.1.2 For an an ordered information system I< =
(U,AT, f), A1, A2, ..., Am ⊆ AT , for any X,Y ⊆ U ,kj ∈ N
we have the follow properties:

(1)

m∑
j=1

R<
Aj

O

kj

(U) = U ; (2)

m∑
j=1

R<
Aj

O

kj

(∅) = ∅;

(3)
m∑
j=1

R<
Aj

O

kj

(Y ) ⊇
m∑
i=1

R<
Ai

O

kj

(X), where X ⊆ Y ;

(4)

m∑
j=1

R<
Aj

O

kj

(Y ) ⊇
m∑
j=1

R<
Ai

O

kj

(X), where X ⊆ Y ;

(5)
m∑
j=1

R<
Ai

O

kj

(X) ∩
m∑
j=1

R<
Aj

O

kj

(Y ) =
m∑
j=1

R<
Aj

O

kj

(X ∩ Y );

(6)
m∑
j=1

R<
Ai

O

kj

(X) ∩
m∑
j=1

R<
Aj

O

kj

(Y ) ⊇
m∑
j=1

R<
Aj

O

kj

(X ∩ Y );

(7)
m∑
j=1

R<
Aj

O

kj

(X) ∪
m∑
j=1

R<
Aj

O

kj

(Y ) ⊆
m∑
j=1

R<
Aj

O

kj

(X ∪ Y );

(8)

m∑
j=1

R<
Ai

O

kj

(X) ∪
m∑
j=1

R<
Aj

O

kj

(Y ) =

m∑
j=1

R<
Aj

O

ki

(X ∪ Y ).

Proof: According to the definition, the properties (1) and (2)
can be easily proved.

(3) If X ⊆ Y that mens ([x<]Aj ∩ X) ⊆ ([x]<Aj
∩ Y ) for

any j ∈ {1, 2, · · · ,m. So, (|[x]<Aj
| − [x]<Aj

∩X|) ≥ (|[x]<Aj
| −

[x]<Aj
∩ Y |). For any x ∈

m∑
j=1

R<
Aj

O

kj

(X) exist j s.t. |[x]<Aj
| ≤
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kj + |[x]<Aj
∩X| so, |[x]<Aj

| − |[x]Aj
∩ Y | ≤ kj . That is, x ∈∑m

j=1 R
<
Aj

O

kj

(Y ), namely,
m∑
j=1

R<
Aj

O

kj

(X) ⊆
m∑
j=1

R<
Aj

O

kj

(Y ).

(4)For any x ∈
m∑
j=1

R<
Aj

O

kj

(X), then, for all j have |[x]<Aj
∩

X| > kj . So, |[x]<Aj
∩ Y | > kj , hence, x ∈

m∑
j=1

R<
Aj

O

kj

(Y ).

Thus,
m∑
j=1

R<
Aj

O

kj

(X) ⊆
m∑
j=1

R<
Aj

O

kj

(Y ).

(5) For any X,Y ⊆ U,X ∩ Y ⊆ X,Y , then, ac-
cording property (3) the ” ⊆ ” can be proved. For ∀x ∈
m∑
j=1

R<
Aj

O

kj

(X) ∩
m∑
j=1

R<
Aj

O

kj

(Y ). Based above definition, we

can get at last have one j s.t. |[x]<Aj
| − |[x]<Aj

∩ X| 6 kj

and |[x]<Aj
| − |[x]<Aj

∩ Y | 6 kj . So, it must have one j, s.t.

|[x]<Aj
|− |[x]<Aj

∩X ∩Y | 6 kj . Thus, x ∈
m∑
j=1

R<
Aj

O

kj

(X ∩Y ),

means ” ⊇ ” is hold. Consequently, the prove is fulfilled.
The remaining (6), (7) and (8) can be similarly to prove. 2

Theorem 3.1.3 For an an ordered information system I< =
(U,AT, f), A1, A2, ..., Am ⊆ AT , for any X,Y ⊆ U ,kj ∈ N
we have:

m∑
i=1

Ao
j(X) ⊆

m∑
j=1

R<
Aj

O

kj

(X),

m∑
i=1

R<
Aj

O

kj

(X) ⊆
m∑
j=1

Ao
j(X).

Especially, for ∀ kj = 0, j ∈ {1, 2, · · · ,m}, then
m∑
j=1

R<
Ai

O

kj

(X) =
m∑
j=1

Ao
jk
(X),

m∑
j=1

R<
Aj

O

kj

(X) =
m∑
j=1

Ao
j(X).

So, the multi-granulation with different grades rough set
model is also an expansion of multi-granulation RST model.
Proof:According the definition it is easy to prove. 2

B. The pessimistic multi-granulation with different grades
rough set in OIS

Similarly ways to optimistic multi-granulation rough set
model, we discuss pessimistic multi-granulation with different
grades RST in OIS.
Definition 3.2.1. There is an ordered information system
I< = (U,AT, f), A1, A2, ..., Am are subset of AT , for any
X ⊆ U , kj ∈ N. The pessimistic multi-granulation upper and
lower approximation of X with different grades are defined in
following way:
m∑
j=1

R<
Aj

P

kj

(X) = {x ∈ U :
m∧
j=1

(|[x]<Aj
| − |[x]<Aj

∩X|) ≤ kj},

m∑
j=1

R<
Ai

P

kj

(X) =∼
m∑
j=1

R<
Aj

P

kj

(∼ X).

Moreover,
m∑
j=1

R<
Aj

P

kj

(X) 6=
m∑
j=1

R<
Aj

P

kj

(X), we say that X

is a pessimistic rough set about these multiple grades. If not,
one can say that X is pessimistic definable set respect to mul-
tiple graded and multiple granulations in ordered information
system. Based on the above approximation operators, the other
rough regions can be defined like the optimistic case.
Theorem 3.2.1 If I< = (U,AT, f) is an ordered information
system, A1, A2, ..., Am ⊆ AT , for any X ⊆ U, kj ∈ N:

m∑
j=1

R<
Aj

P

kj

(X) = {x ∈ U :
m∨
j=1

(|X ∩ [x]<Aj
|) > kj}.

Proof: The process is similarly to Theorem 3.1.1. 2

Theorem 3.2.2 For an an ordered information system I< =
(U,AT, f), A1, A2, ..., Am ⊆ AT , for any X,Y ⊆ U ,kj ∈ N
we have the follow properties:

(1)
m∑
j=1

R<
Ai

P

kj

(U) = U, (2)
m∑
j=1

R<
Ai

P

kj

(∅) = ∅;

(3)
m∑
i=1

R<
Aj

P

kj

(Y ) ⊇
m∑
j=1

R<
Ai

P

kj

(X), where X ⊆ Y ;

(4)

m∑
j=1

R<
Ai

P

kj

(Y ) ⊇
m∑
j=1

R<
Aj

P

kj

(X), where X ⊆ Y ;

(5)
m∑
j=1

R<
Aj

P

kj

(X) ∩
m∑
j=1

R<
Aj

P

kj

(Y ) =
m∑
j=1

R<
Ai

P

kj

(X ∩ Y );

(6)
m∑
j=1

R<
Ai

P

kj

(X) ∩
m∑
j=1

R<
Aj

P

kj

(Y ) ⊇
m∑
j=1

R<
Ai

P

kj

(X ∩ Y );

(7)
m∑
j=1

R<
Aj

P

kj

(X) ∪
m∑
j=1

R<
Aj

P

kj

(Y ) ⊆
m∑
j=1

R<
Aj

P

kj

(X ∪ Y );

(8)

m∑
j=1

R<
Aj

P

kj

(X) ∪
m∑
j=1

R<
Aj

P

kj

(Y ) =

m∑
j=1

R<
Aj

P

kj

(X ∪ Y ).

Proof: It’s similarly to Theorem 3.1.2. 2

Theorem 3.2.3 For an an ordered information system I< =
(U,AT, f), A1, A2, ..., Am ⊆ AT , for any X,Y ⊆ U ,kj ∈ N
we have:

m∑
j=1

R<
Aj

P

(X) ⊆
m∑
j=1

R<
Aj

P

kj

(X),

m∑
j=1

R<
Aj

P

kj

(X) ⊆
m∑
j=1

R<
Aj

P

(X).

Especially, for ∀ kj = 0, j = 1, 2, · · · ,m, then
m∑
j=1

R<
Aj

P

kj

(X) =
m∑
j=1

AP
jk
(X),

m∑
j=1

R<
Aj

P

kj

(X) =
m∑
j=1

AP
j (X).

So, the multi-granulation with different grades rough set is
an expansion of the multi-granulation rough set.
Proof:According the definition it is easy to prove. 2
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C. The mean multi-granulation with different grades rough set
in OIS

To discuss the mean graded when there many graded
in multi-granulation environment, we define a mean multi-
granulation with different grades rough set in OIS.
Definition 3.3.1. There is an ordered information system
I< = (U,AT, f), A1, A2, ..., Am are subset of AT , for any
X ⊆ U , kj ∈ N. The mean multi-granulation upper and lower
approximation of X with different grades are:

m∑
j=1

R<
Aj

M

kj

(X) = {x ∈ U :
m∑
j=1

(|[x]<Aj
| − |[x]<Aj

∩X|) ≤

m∑
j=1

kj

m
},

m∑
j=1

R<
Aj

M

kj

(X) =∼
m∑
j=1

R<
Aj

M

kj

(∼ X).

According the definition of the approximations operator, we
can define the other regions like before two cases.
Theorem 3.3.1 For an an ordered information system I< =
(U,AT, f), A1, A2, ..., Am ⊆ AT , for any X,Y ⊆ U ,kj ∈ N
we have the follow properties:

m∑
j=1

R<
Aj

M

kj

(X) = {x ∈ U :

m∑
j=1

(|[x]<Aj
∩X|) > 1

m

m∑
j=1

kj}.

Proof:According the definition it is easy to prove. 2

Theorem 3.3.2 For an an ordered information system I< =
(U,AT, f), A1, A2, ..., Am ⊆ AT , for any X,Y ⊆ U ,kj ∈ N
we have the follow properties:

(1)

m∑
j=1

R<
Ai

M

kj

(U) = U, (2)

m∑
j=1

R<
Ai

M

kj

(∅) = ∅;

(3)
m∑
j=1

R<
Aj

M

kj

(Y ) ⊇
m∑
j=1

R<
Ai

M

kj

(X), where X ⊆ Y ;

(4)
m∑
j=1

R<
Aj

M

kj

(Y ) ⊇
m∑
j=1

R<
Ai

M

kj

(X), where X ⊆ Y ;

(5)
m∑
i=1

R<
Ai

M

kj

(X) ∩
m∑
j=1

R<
Aj

M

kj

(Y ) =
m∑
j=1

R<
Ai

M

kj

(X ∩ Y );

(6)
m∑
j=1

R<
Aj

M

kj

(X) ∩
m∑
j=1

R<
Aj

M

kj

(Y ) ⊇
m∑
j=1

R<
Ai

M

kj

(X ∩ Y );

(7)

m∑
j=1

R<
Aj

P

kj

(X) ∪
m∑
j=1

R<
Aj

M

kj

(Y ) ⊆
m∑
j=1

R<
Ai

M

kj

(X ∪ Y );

(8)
m∑
j=1

R<
Aj

M

kj

(X) ∪
m∑
j=1

R<
Aj

M

kj

(Y ) =
m∑
j=1

R<
Ai

M

kj

(X ∪ Y ).

Proof: It’s similarly to Theorem 3.1.2. 2

IV. CASE STUDY

In this section, we study on a students’ achievements case
based on our previous discussion.

Suppose I< is an ordered information system about stu-
dents’ achievements and the universe U = {x1, x2, · · · , x10}
stands for ten students, the set of condition attributes AT =
{mathematics , physical , chemistry english , chinese }
and denote A1 = {mathematics, physical, chemistry},
A2 = {chinese, mathematics, english} are two granules.
The value of the attribute ”3” means ”good”, ”2” means
”medium”, ”1” means ”qualified”, and ”0” means ”filed”. Data
as shown in table 1.

Table 1 A students’ achievements table

CHN. Math. ENG. Phy. Chem.
x1 3 2 3 3 3
x2 3 2 3 2 2
x3 2 1 1 2 3
x4 1 2 2 1 2
x5 2 3 2 3 2
x6 2 3 2 3 3
x7 3 2 3 2 2
x8 1 0 1 2 3
x9 1 2 2 1 2
x10 2 1 1 2 3

We first calculate the dominance classes for each object with
respect to granule A1 and A2.

Suppose X = {x1, x2, · · · , x5}, and k1 = 1, k2 = 2 based
on the above dominance classes by the definitions we can get
the follows results.
Case 1. The result for optimistic multi-granulation with dif-
ferent grades rough set are:

2∑
j=1

R<
Ai

O

kj

(X) = {x4, x9}.

2∑
j=1

R<
Ai

O

kj

(X) = {x1, x2, x3, x5, x6, x7, x9},

Based the upper and lower approximations other rough
regions of X can get as follow.

Pos(X)O2∑
j=1

kj

= {x9}, Neg(X)O2∑
j=1

kj

= {x8,x10
},

Lbn(X)O2∑
j=1

kj

= {x4},

Ubn(X)O2∑
j=1

kj

= {x1, x2, x3, x5, x6, x7},

Bn(X)O2∑
j=1

kj

= {x1, x2, x3, x4, x5, x6, x7}.

Case 2. The result for pessimistic multi-granulation with
different grades rough set are:

2∑
j=1

R<
Ai

P

kj

(X) = {x1, x2},

2∑
j=1

R<
Ai

P

kj

(X) = {x1, x2, x3, x4, x8, x9, x10}.
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The other rough regions of X can be got by the lower and
upper approximations as.

Pos(X)P2∑
j=1

kj

= {x1, x2}, Lbn(X)P2∑
j=1

kj

= ∅,

Neg(X)P2∑
j=1

kj

= {x5, x6, x7},

Ubn(X)P2∑
j=1

kj

= {x3, x4, x8, x9, x10},

Bn(X)P2∑
j=1

ki

= {x3, x4, x8, x9, x10}.

Case 3. The result for mean multi-granulation with different
grades rough set are:

2∑
j=1

R<
Aj

M

kj

(X) = {x1, x2, x6},

2∑
j=1

R<
Aj

M

kj

(X) = {x2, x3, x4, x8, x9, x10}.

According the lower and upper approximations, the other
rough regions of X can get as follow.
Pos(X)M2∑

j=1

kj

= {x2}, Neg(X)M2∑
j=1

kj

= {x5, x7},

Lbn(X)M2∑
j=1

kj

= {x1, x6},

Ubn(X)M2∑
j=1

kj

= {x3, x4, x8, x9, x10},

Bn(X)M2∑
j=1

kj

= {x1, x3, x4, x6, x8, x9, x10}.

The three types results are not entirely consistent. Con-
sequently, in different application fields can select different
model according the different requirements.

V. CONCLUSION

The multi-granulation rough set and graded rough set are
important expansions of classical rough set and have been
applied into many fields. In our study, we integrate the good
points of graded rough set and multi-granulation rough set
theory in OIS. The main contribution of this paper is that
we constructed three different types of multi-granulation with
different grades rough set associated with granular computing,
in which the upper and lower approximation operators are
got by multiple dominance relations, respectively. We have
discussed some properties of these three types RST models.
Finally, we make a case study evaluate the performance of
the proposed properties. This study extended classical rough
set in viewpoint of GrC and meaningful compared with the
generalization of RST. In our further work, we will study the
measure of the three types model and use these approaches to
solve the issues in real-world.
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